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Abstract—Recent transient-execution attacks, such as RIDL,
Fallout, and ZombieLoad, demonstrated that attackers can leak
information while it transits through microarchitectural buffers.
Named Microarchitectural Data Sampling (MDS) by Intel, these
attacks are likened to “drinking from the firehose”, as the
attacker has little control over what data is observed and from
what origin. Unable to prevent the buffers from leaking, Intel
issued countermeasures via microcode updates that overwrite the
buffers when the CPU changes security domains.

In this work we present CacheOut, a new microarchitectural
attack that is capable of bypassing Intel’s buffer overwrite
countermeasures. We observe that as data is being evicted from
the CPU’s L1 cache, it is often transferred back to the leaky CPU
buffers where it can be recovered by the attacker. CacheOut
improves over previous MDS attacks by allowing the attacker
to choose which data to leak from the CPU’s L1 cache, as
well as which part of a cache line to leak. We demonstrate
that CacheOut can leak information across multiple security
boundaries, including those between processes, virtual machines,
user and kernel space, and from SGX enclaves.

I. INTRODUCTION

In 2018 Spectre [31] and Meltdown [33] left an everlasting
impact on the design of modern processors. Speculative and
out-of-order execution, which were considered to be harmless
and important CPU performance features, were discovered to
have severe and dangerous security implications. While the
original Meltdown and Spectre works focused on breaking
kernel-from-user and process-from-process isolation, many
follow-up works have demonstrated the dangers posed by
uncontrolled speculation and out-of-order execution. Indeed,
these newly-discovered transient-execution attacks have been
used to violate numerous security domains, such as Intel’s
Secure Guard Extension (SGX) [46], virtual machine bound-
aries [50], AES hardware accelerators [45] and others [3, 5,
7, 17, 28, 30, 31, 32, 35, 36].

More recently, the security community uncovered a deeper
source of leakage: internal and mostly undocumented CPU
buffers. With the advent of Microarchitectural Data Sampling
(MDS) attacks [4, 43, 48], it was discovered that the contents
of these buffers can be leaked via assisting or faulting load
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instructions, bypassing the CPU’s address and permission
checks. Using these techniques, an attacker can siphon off data
as it appears in the buffer, bypassing all previous hardware
and software countermeasures and again breaking nearly all
hardware-backed security domains.

Responding to the threat of unconstrained data extraction,
Intel deployed countermeasures for blocking data leakage from
internal CPU buffers. For older hardware, Intel augmented a
legacy x86 instruction, verw, to overwrite the contents of the
leaking buffers.

This countermeasure was subsequently deployed by all
major operating system vendors, performing buffer overwrite
on every security domain change. In parallel, Intel launched
the new Whiskey Lake architecture, which is designed to be
resistant to MDS attacks [4, 43, 48].

While the intuition behind the buffer overwrite countermea-
sure is that an attacker cannot recover buffer information that
is no longer present, previous works [43, 48] already report
observing some residual leakage despite buffer overwriting.
Thus, in this paper we ask the following questions:

Are buffer overwrites sufficient to block MDS-type attacks?
How can an adversary exploit the the buffers in Intel CPUs
despite their content being properly overwritten?

Moreover, for Whiskey Lake machines, we note that the
nature of Intel’s hardware countermeasures is not documented,
requiring users to blindly trust Intel that MDS has been truly
mitigated. Thus, we ask the following secondary questions:

Are Whiskey Lake machines truly resistant to MDS attacks?
How can an attacker leak data from these machines despite
Intel’s hardware countermeasures?

A. Our Contribution

Unfortunately, we show that ad-hoc buffer overwrite coun-
termeasures as well as Intel’s hardware mitigations are both
insufficient to completely mitigate MDS-type attacks. More
specifically, we present CacheOut, a transient-execution attack
that is capable of bypassing Intel’s buffer overwriting coun-
termeasures as well as leak data on MDS-resistant Whiskey
Lake CPUs. Moreover, unlike prior MDS works, CacheOut
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allows the attacker to select which cache sets to read from
the CPU’s L1 Data cache, as opposed to being limited to
data present in the 12 entries of the line fill buffers. Next,
because the L1 cache is often not flushed on security domain
changes, CacheOut is effective even in the case without
hyper-threading, where the victim always runs sequentially
to the attacker. Finally, we show that CacheOut is applicable
to nearly all hardware-backed security domains, including
process and kernel isolation, virtual machine boundaries, and
the confidentiality of SGX enclaves.
A New Type of LFB Leakage. We begin by observing
that Intel’s MDS countermeasures (e.g., the verw instruction)
do not address the root cause of MDS. That is, even after
Intel’s microcode updates, it is still possible to use faulting
or assisting loads to leak information from internal CPU
buffers. Instead, Intel’s verw instruction overwrites all the
stale information in these buffers, sanitizing their contents.
We further note previous observations by ZombieLoad and
RIDL [43, 48], which report residual leakage from the Line
Fill Buffers (LFBs) on MDS-vulnerable processors despite the
verw mitigation.

At a high level, the line fill buffers are intended to provide
a non-blocking operation of the L1-D cache by handling data
retrieval from lower levels of the memory architecture when a
cache miss occurs [1, 2]. Despite their intended role of fetching
data into the L1-D, we empirically find that on Intel CPUs
there exists an undocumented path where data evicted from
the L1-D cache occasionally ends up inside the LFB.
CacheOut Overview. Exploiting this path, in this paper we
show a new technique where we first evict data from the L1-
D, and subsequently use a faulting or assisting load to recover
it from the LFB. This technique has two important security
implications. First, in contrast to prior MDS attacks which
can only access information that transits through the CPU’s
internal buffers, CacheOut can leak information present in the
entire L1-D cache by simply evicting it. Next, we demonstrate
that this information path between L1-D evictions and the
LFB has devastating consequences on countermeasures that
are rely on flushing buffers on security domain changes. In
particular, using Intel’s verw instruction on does not protect
against CacheOut, because the transfer of evicted data from
the L1 cache to the LFB occurs well after the context switch
and the completion of the associated verw instruction.
Attacking Whiskey Lake Processors. We note that the
information path from the L1-D to the LFB exists on Intel’s
latest Whiskey Lake processors, which protect against MDS
attacks via hardware countermeasures as opposed to the verw
instruction. In addition to not leaking from internal CPU
buffers, these machines also contain hardware mitigations
against prior Meltdown and Foreshadow/L1TF attacks which
leak information from the L1 cache. Thus, to the best of our
knowledge, CacheOut is the first demonstration of a successful
transient-execution attack on Whiskey Lake CPUs, which do
not directly leak either from the LFB nor from the L1 cache.
Leakage Amount. As noted above, the presence of data leak-
age despite using the verw instruction has been previously

observed by both the RIDL [48] and the ZombieLoad [43]
teams. RIDL does not report any rates but only shows leakage
via statistical significance. ZombieLoad reports a troubling but
insignificant amount of leakage, around 0.1 B/s [43, Section 7].
In this work we show that the leakage is significantly higher,
peaking out at around 2.85 KiB/s.
Controlling What to Leak. Our technique of forcing L1
eviction also allows us to select the data to leak from the
victim’s address space. Specifically, the attacker can force
contention on a specific cache set, causing eviction of victim
data from this cache set, and subsequently use the TAA
attack [21] to leak this data after it transits through the LFB.
To further control the location of the leaked data, we observe
that the LFB seems to have a read offset that controls the
position within the buffer from which a load instruction reads.
We observe that some faulting or assisting loads can use
stale offsets from subsequent load instructions. Combined with
cache evictions, this allows us to control the 12 least significant
bits of the address of the data we leak.

Finally, by repeating this technique across all 64 L1-D cache
sets, CacheOut is able to dump entire 4 KiB pages from the
victim’s address space, recoving data as well as the positions of
data pieces relative to each other. This significantly improves
over previous MDS attacks which can only recover informa-
tion as it transits through the LFB without its corresponding
location; TAA has the additional limitation of being able to
read only the first 8 bytes of every cache line present in the
LFB, leaving the other 56 bytes inaccessible.
Attacking Loads. Cache eviction is useful for leaking data
from cache lines modified by the victim. This is because the
victim’s write marks the corresponding cache line as dirty,
forcing the CPU to move the data out of the cache and to
the LFB. It does not, however, allow us to leak data that is
only read by the victim, since this data is not written back to
memory and does not occupy a buffer when evicted from the
L1 cache. We overcome this by evicting the victim’s data from
the L1 before the victim has a chance to read it. This induces
an L1 cache miss, which is served via the LFB. Finally, we
use an attacker process running on the same physical core as
the victim to recover the data from the LFB.
Attacking Process Isolation. We show that CacheOut has se-
vere implications for OS-enforced process security boundaries,
as it allows unprivileged users to read information belonging to
other victim processes, thereby breaching their confidentiality.
We demonstrate this risk by implementing attacks on private
data across processes in different security domains. Targeting
OpenSSL’s AES operations, we successfully recover secret
keys and plaintext data in both the scenarios with and without
hyper-threading. We also developed attacks for both recovering
OpenSSL RSA private keys and stealing the secret weights
from a FANN artificial neural network.
Attacking the Linux Kernel. Beyond proof-of-concept
exploits, we also demonstrate highly practical attacks against
the Linux kernel, all mounted from unprivileged user pro-
cesses. By taking advantage of CacheOut’s cache line selection
capabilities, we are able to completely derandomize Kernel
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Address Space Layout Randomization (KASLR) in under
a second. Furthermore, we demonstrate extraction of stack
canaries from the kernel. To the best of our knowledge, this
is the first demonstration of acquiring this information via a
MDS-type transient-execution attack.
Attacking Intel’s Secure Guard Extensions (SGX). We
demonstrate that CacheOut can dump the contents of SGX
enclaves. We show the recovery of an image from SGX
enclaves as well as of EPID keys in debug mode. These attacks
are performed on a fully updated Whiskey Lake CPU, which
is resistant to previous MDS attacks, including Fallout [4],
ZombieLoad [43] and RIDL [48] and TSX Asynchronous
Abort (TAA) [21]. In particular, this implies that Intel’s current
hardware mitigations for SGX are insufficient, allowing an
attacker to breach the confidentiality of SGX enclaves.

Moreover, CacheOut can dump the contents of an enclave
without requiring it to perform any operation or even execute
at all. Instead, we directly dump the memory content of the
victim enclave while the enclave is idle. Thus, our attack
bypasses all software-based SGX side-channel defenses such
as constant-time coding and others [6, 12, 39, 42, 44] which
rely on the enclave executing code for its protection.
Attacking Virtual Machines. Another security domain we
explore is the isolation of different virtual machines running on
the same physical core. We show that CacheOut is effective at
leaking data from both virtual machines and from hypervisors.
Experimentally evaluating this, we completely derandomize
the Address Space Layout Randomization (ASLR) used by
the hypervisor and recover AES keys from another VM.
Avoiding Hyper-Threading. While CacheOut is most
effective across hyper-threads, we can nonetheless use it to
recover information in a time-shared environment, with hyper-
threading being disabled, even in the presence of the verw
countermeasure. The core failure is that the verw instruction
only flushes the internal CPU buffers, and not the L1 cache.
Thus, an attacker can evict cached data left by the victim and
subsequently recover it from the leaky line fill buffer. Finally,
CacheOut is able to defeat the hardware countermeasures on
Whiskey Lake CPUs, both with and without hyper-threading.
Summary of Contributions. In this paper we make the
following contributions:
• We present CacheOut, the first transient-execution attack

that can leak across arbitrary address spaces while still
retaining fine grained control over what data to leak. More-
over, unlike other MDS-type attacks, CacheOut cannot be
mitigated by simply overwriting the contents of internal
CPU buffers between context switches, even when hyper-
threading is disabled.

• We demonstrate the effectiveness of CacheOut in violating
process isolation by recovering AES and RSA keys as well
as plaintexts from an OpenSSL-based victim.

• We demonstrate practical exploits for completely derandom-
izing Linux’s kernel ASLR, and for recovering secret stack
canaries from the Linux kernel.

• We demonstrate how CacheOut violates isolation between
two virtual machines running on the same physical core.

• We breach SGX’s confidentiality guarantees by reading
out the contents of an SGX enclave and recovering the
machine’s attestation keys from a fully updated system.

• We demonstrate that some of the latest Intel CPUs are
still vulnerable, despite all of the most recent patches and
mitigations. In particular, to the best of our knowledge,
CacheOut is the first transient-execution attack to break
Intel’s MDS-resistant Whiskey Lake architecture.

• We discuss why current transient-execution attack mitiga-
tions are insufficient, and offer suggestions on what coun-
termeasures would effectively mitigate CacheOut.

B. Current Status and Disclosure

Van Schaik et al. [48] note the relationship between cache
evictions and MDS attacks. The first author and researchers
from VU Amsterdam notified Intel about the findings con-
tained in this paper during October 2019 Intel acknowledged
the issue and assigned CVE-2020-0549, referring to the
issue as L1 Data Eviction Sampling (L1DES) with a CVSS
score of 6.5 (medium). Intel has also informed that L1DES has
been independently reported by researchers from TU Graz and
KU Leuven.
Current Status. In November 2019, after our initial
disclosure of CacheOut, Intel attempted to mitigate TSX
Asynchronous Abort (TAA) [21], a variant of MDS which
allows an attacker to leak information from internal CPU
buffers. Consequently, in November 2019 Intel published mi-
crocode updates that enable turning off Transactional Memory
Extension (TSX) on CPUs made after Q4 2018. These have
been deployed by OS vendors, preventing some variants of
CacheOut on these machines. However, for SGX, a malicious
OS can always re-enable TSX. As we show in this paper, this
results in a loss of confidentiality due to our breach of Intel’s
TAA countermeasures for protecting SGX.

Next, we note that the majority of deployed Intel hardware
is older, and was released prior to Q4 2018. For these systems,
TSX is enabled by default at the time of writing, leaving
them vulnerable to all variants of CacheOut. Finally, Intel had
indicated that microcode updates mitigating the root cause
behind CacheOut will be published on June 9th, 2020. We
recommend these be installed on all affected Intel platforms
to properly mitigate CacheOut.

II. BACKGROUND

A. Caches

To bridge the performance gap between the CPU and main
memory, processors contain small buffers called caches. These
exploit locality by storing frequently and recently used data to
hide the access latency of main memory. Modern processors
typically include multiple caches. In this work we are mainly
interested in the L1-D cache, which is a small cache that stores
data the program uses. A multi-core processor typically has
one L1-D cache in each processor core.
Cache Organization. Caches generally consist of multiple
cache sets that can host up to a certain number of cache lines
or ways. Part of the virtual or physical address of a cache
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L2 Cache (256 KiB)

Write Path

Read Path Processor Core

Fill Buffer (12 entries)L1-D Cache (32 KiB)New Path L1-D Cache (32 KiB)

Fig. 1: The data paths within the CPU core, with the paths for
loads marked in blue, the path for stores in orange, and the
new undocumented path that we uncovered marked in red.

line maps that cache line to its respective cache set, where
congruent addresses are those that map to the same cache set.
Cache Attacks. An attacker can infer secret information
from a victim in a shared physical system such as a virtual-
ized environment by monitoring the victim’s cache accesses.
Previous work proposed many different techniques to perform
cache attacks, the most notable among them being FLUSH+
RELOAD and PRIME+PROBE.

FLUSH+RELOAD attacks [14, 52] work with shared mem-
ory at the granularity of a cache line. The attacker repeatedly
flushes a cache line using a dedicated instruction, such as
clflush, and then measures how long it takes to reload the
cache line. A fast reload time indicates that another process
brought the cache line back into the cache.

PRIME+PROBE [27, 29, 34, 40, 41] attacks, on the other
hand, work without shared memory, but only at the granularity
of a cache set. The attacker repeatedly accesses an eviction
set—a set of congruent memory addresses that fills up an
entire cache set—while measuring how long that takes. As
the attacker repeatedly fills up the entire cache set with their
own cache lines, the access time is generally low. However,
when another process accesses a memory location in the same
cache set, the access time becomes higher because the victim’s
cache line replaces one of the lines in the eviction set.

B. Microarchitectural Buffers

In addition to caches, modern processors contain multiple
microarchitectural buffers that are used for storing data in-
transit. In this work we are mainly interested in the Line
Fill Buffers, depicted in Figure 1, which handle data transfer
between the L1-D cache, the L2 cache, and the core.
Non-Blocking L1-D Cache Misses. One purpose of the
line fill buffers is to enable non-blocking operation mode
for the L1-D cache [1, 2] by handling the retrieval of data
from lower levels of the memory architecture when a cache
miss occurs. Specifically, when the processor services a load
instruction, it consults both the LFBs and the L1-D cache
in parallel. If the data is available in either component, the
processor forwards the data to the load instruction. Otherwise,
the processor allocates an entry in the LFB to keep track of the
address, and issues a request for the data from the L2 cache.
When the data arrives, the processor forwards it to all pending
loads. The processor may also allocate an entry for the data
in the L1-D cache, where it is stored for future use.

A New Data Path. As mentioned above, while the LFB
is responsible for handling data coming into the L1-D cache,
we empirically demonstrate the existence of an undocumented
data path between L1-D evictions and the LFB (marked in
red in Figure 1). We then exploit this path by causing L1-
D evictions and subsequently leak the evicted data from the
LFB. In addition to bypassing the verw instruction by moving
data into the LFB after the verw-induced buffer overwrite, we
also show that this path exists on MDS-resistant Whiskey Lake
machines, making these vulnerable to CacheOut.

C. Speculative and Out-of-Order Execution

Modern processors try to predict future instructions and
execute instructions as soon as the required data is available,
rather than following the strict order stipulated by the program.
Because the exact sequence of future instructions is not always
known in advance, the processor may sometimes execute
transient instructions that are not part of the nominal program
execution. This can occur, for example, when the processor
mispredicts the outcome of a branch instruction and executes
instructions following the wrong branch. When the processor
determines that an instruction is transient, it drops all of the
results of the instruction instead of committing them to the
architectural state. Consequently, transient instructions do not
affect the architectural state of the processor.

D. Transient-Execution Attacks

Because transient instructions are not part of the nominal
program order, they may sometimes process data that is not
accessible in nominal program order. In recent years, multiple
transient-execution attacks have demonstrated the possibility
of leaking such data [5, 7, 17, 30, 31, 32, 36]. In a typical
attack, the attacker induces speculative execution of transient
instructions that access secret data and leak it back to the
attacker. Because the instructions are transient, they cannot
transmit the secret data via the architectural state of the
processor. However, execution of transient instructions can
modulate the state of microarchitectural components based
on the secret data. The attacker then probes the state of the
microarchitectural component to determine the secret data.

Most published transient-execution attacks use a FLUSH+
RELOAD-based covert channel for sending the data. In a typi-
cal attack, the attacker maintains a probing array consisting of
256 distinct cache lines. The attacker flushes all of these cache
lines from the cache before causing speculative execution of
the attack gadget. Transient instructions in the attack gadget
access a secret data byte, and use it to index a specific cache
line in the probing array, bringing the line into the cache. The
attacker then performs the reload step of the FLUSH+RELOAD
attack to identify which of the probing array’s cache lines is
in the cache, revealing the secret byte.

E. RIDL, ZombieLoad, Medusa vs. CacheOut

Several prior works explore leakage from internal CPU
buffers. These include RIDL [48], ZombieLoad [43], Fall-
out [4], and Medusa [37], collectively known as MDS attacks.
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RIDL. RIDL [48] analyzes the Line Fill Buffers (LFBs)
and the Load Ports. Focusing mainly on the case with hyper-
threading, the work shows that faulting loads can be served
from these buffers, bypassing any address and permission
checks. This allows an attacker to use the sibling core to
siphon off data as it appears in the buffer, compromising the
confidentiality of nearly all hardware-backed security domains.

However, while RIDL conjectures that data evicted from
the L1 cache is moved into the leaky LFB, and even shows
some statistical evidence of such leakage, it does not study the
security implications of this issue nor of Intel’s MDS buffer
flush countermeasures. Moreover, RIDL also lacks control
over what data the attacker is leaking, and instead relies on
averaging techniques to filter the data from the acquired noise.
Finally, the lack of control over what can be leaked from the
L1 cache implies that RIDL only demonstrates attacks in the
hyper-threaded case, where the attacker siphons off data from
the LFB as the victim accesses it.
ZombieLoad. ZombieLoad [43] also analyzes leakage from
the LFBs. Extending RIDL’s findings to loads that require
microcode assists, ZombieLoad shows that leakage exists even
without using faulting loads. ZombieLoad also demonstrates
LFB leakage from the Cascade Lake architecture, that Intel
claims to be the first MDS-resistant architecture.

Similarly to RIDL, ZombieLoad mentions the possibility of
leakage via L1 evictions to the LFB. However, ZombieLoad
proceeds to argue that the leakage is negligible, limited to 0.1
bytes per second. ZombieLoad also suffers from limitations
similar to RIDL with regards to the attacker’s ability to control
the leakage, resorting to Domino-bytes averaging techniques
for data processing with the attacker and victim running
on different threads of the same physical core. While the
ZombieLoad paper mentions kernel attacks in the case without
hyper-threading, Section 6.5 in [43] only demonstrates attacks
using artificially inserted kernel gadgets, at a rate of 10
seconds per byte. Finally, while ZombieLoad does mention
the possibility of hypervisor and cross-VM leakage, Schwarz
et al. [43] only demonstrate a cross-VM covert channel.
Medusa. In concurrent independent work, Moghimi et al.
[37] presented Medusa, a variant of ZombieLoad that recovers
information from write-combining (WC) operations [8], for
which the LFB is responsible on Intel CPUs [22, vol. 3 pg. 6-
38]. By focusing on leakage from write combining done in the
LFB during rep mov and rep stos operations, Medusa
is able to obtain a cleaner LFB leakage signal, as it avoids
recovering values from other memory operations. Finally, as
OpenSSL uses fast memory copying to copy RSA keys, and
the kernel to transfer data, Medusa demonstrated the recovery
of such data across hyper-threads.

However, Medusa is (intentionally) limited to only recov-
ering values during write combining, and is unable to recover
leakage from other memory operations. Being a variant of
ZombieLoad, the attacker has no knowledge or control over
the exact offsets, and can only partially sample the leaked data.
This results in slow leakage rates of 12 B/s for kernel data, and
the need for Domino-bytes signal averaging. For unstructured

data (e.g., RSA keys), a 400 CPU hour lattice attack [9] is
needed to recover the 1024-bit RSA key from the raw leakage,
which is obtained during a 7 minutes measurement phase.
CacheOut. In this work, we also focus on leakage from Intel’s
LFB. However, unlike RIDL, ZombieLoad, and Medusa we do
not wait for the information to become available in the LFB,
and instead use cache evictions to actively move it to the leaky
LFB. We show that the leakage is far greater than the 0.1B/s
conjectured by ZombieLoad, peaking out at 2.85KiB/s. Next,
we show that by using cache evictions the attacker can choose
what information he is interested in leaking, thus avoiding the
need to use noise-averaging techniques. Ironically, in addition
to bypassing Intel’s verw countermeasure that overwrites the
contents of the leaky buffers, we go a step further and show
how verw can actually be used to improve our attack’s leak-
age rate. Furthermore, we show the effectiveness of CacheOut
in breaking the isolation between processes, VMs, hypervisors,
and SGX enclaves. Finally, we show that MDS attacks are still
effective on Intel’s latest MDS-resistant Whiskey Lake CPUs.

F. TSX Asynchronous Abort

Some contemporary Intel processors implement memory
transactions through the Transactional Synchronization Ex-
tensions (TSX). As part of the extension, TSX offers the
xbegin and xend instructions to mark the start and end of a
transaction, respectively. These instructions form a transaction
where either all of them execute to completion or none
of them at all. All of the transaction’s instructions execute
speculatively, but are only committed if execution reaches the
xend instruction. If during the execution of a transaction any
instruction in the transaction faults, the transaction is aborted
and all of the instructions in the transaction are dropped.

The Intel manual states that there are CPU implementa-
tions where the clflush instruction may always cause a
transactional abort with TSX [22, vol. 2A, pg. 3-139–3-142].
TSX Asynchronous Abort (TAA) [21, 43, 48] exploits this
behavior in a transient-execution attack by flushing cache lines
before running a transaction that attempts to load data from
the flushed cache line. Reading from the flushed line aborts the
transaction. However, before the transaction aborts, the proces-
sor allocates an LFB entry for the load instruction. When the
transaction aborts, the load instruction is allowed to proceed
speculatively with data from the LFB. Since the load does not
complete successfully, the load proceeds with remnants from a
previous memory access, allowing the attacker to sample LFB
data [19, 21]. We refer the reader to Appendix A for a TAA
code example.

III. CPU MITIGATIONS AND THREAT MODEL

Since the discovery of Spectre [31] and Meltdown [33],
there have been numerous works that exploit speculative and
out-of-order execution to violate hardware-backed security
domains [5, 7, 17, 30, 31, 32, 36]. In response, recent Intel
processor contain hardware-based countermeasures aimed at
addressing these attacks. Table I summarizes these counter-
measures in some recent Intel processors. For processors that
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CPU Year CPUID Meltdown Foreshadow MDS TAA CacheOut

Intel Xeon Silver 4214 (Cascade Lake SP) Q2 ’19 50657 X X X 7 7
Intel Core i7-8665U (Whiskey Lake) Q2 ’19 806EC X X X 7 7
Intel Core i9-9900K (Coffee Lake Refresh - Stepping 13) Q4 ’18 906ED X X X 7 7
Intel Core i9-9900K (Coffee Lake Refresh - Stepping 12) Q4 ’18 906EC X X 7 7 7
Intel Core i7-8700K (Coffee Lake) Q4 ’17 906EA 7 7 7 7 7
Intel Core i7-7700K (Kaby Lake) Q1 ’17 906E9 7 7 7 7 7
Intel Core i7-7800X (Skylake X) Q2 ’17 50654 7 7 7 7 7
Intel Core i7-6700K (Skylake) Q3 ’15 506E3 7 7 7 7 7
Intel Core i7-6820HQ (Skylake) Q3 ’15 506E3 7 7 7 7 7

TABLE I: Countermeasures for transient execution attacks in Intel processors. X and 7 indicate the existence or absence of
in-silicon countermeasure for the attack.

are not protected, Intel enabled some features that can be used
to provide software-based protection. We now describe these
software-based countermeasures.
Kernel Page Table Isolation (KPTI). Meltdown [20, 33]
shows that an attacker can bypass the protection of kernel
memory. The attack requires that the virtual address is present
in the address space and that the data it refers to is present
in the L1-D cache. Thus, to mitigate Meltdown, operating
systems deploy KPTI [10, 13] or similar defenses that separate
the kernel address space from the user address space, thereby
rendering kernel addresses inaccessible to attackers.
Flushing the L1-D Cache. KPTI alone soon turned out to
be ineffective, as Foreshadow/L1TF [18, 46, 50] demonstrates
that any data can be leaked from the L1-D cache by specu-
latively reading from the physical address corresponding with
the data in L1-D cache. Since the disclosure of Foreshadow,
Intel CPUs introduced MSR_IA32_FLUSH_CMD to flush the
L1-D cache upon a VM context switch. When the MSR is
unavailable, the Linux KVM resorts to writing 64 KiB of data
to 16 pages. *

Flushing MDS Buffers. Fallout [4], RIDL [48], Zom-
bieLoad [43], and Medusa [37] show that attackers can
leak data transiting through various internal microarchitectural
buffers, such as the LFBs discussed in Section II. To address
these issues for older hardware, Intel provided microcode
updates [24] that repurpose the verw instruction to flush these
microarchitectural buffers by overwriting them. The operating
system has to issue the verw instruction upon every context
switch to effectively flush these microarchitectural buffers.
The Whiskey Lake Architecture. In an attempt to mitigate
MDS attacks in hardware, Intel also released the Whiskey
Lake architecture, which contains hardware mitigations to
MDS attacks (i.e., RIDL, Fallout, and ZombieLoad) as well
as to Meltdown and Foreshadow/L1TF. In particular, Whiskey
Lake machines are not vulnerable to previous MDS techniques
that leak from internal buffers or to older generation Melt-
down/Foreshadow attacks which leak the contents of the L1-D
cache. As we show however, these machines are vulnerable to
CacheOut, making our attack the only attack currently capable
of leaking the contents of L1-D on these machines.

*https://github.com/torvalds/linux/blob/aedc0650f9135f3b92b39cbed1a8f
e98d8088825/arch/x86/kvm/vmx/vmx.c#L5936

Threat Model. We assume that the attacker is an unprivileged
user, such as a VM, or an unprivileged user process on the
victim’s system. For the victim, we assume an Intel-based
system that has been fully patched against Meltdown, Fore-
shadow, and MDS either in hardware or software. We further
assume that there are no software bugs or vulnerabilities in
the victim software, or in any support software running on the
victim machine. We also assume that TSX RTM is present
and enabled. Finally, we assume that the attacker can run on
the same processor core as the victim.

IV. CACHEOUT: EXPLOITING CACHE EVICTIONS

We now start our exposure of CacheOut and show that it
can bypass Intel’s buffer overwriting countermeasures. At a
high level, CacheOut forces contention on the L1-D cache
to evict the data it targets from the cache. We describe two
variants. First, in the case that the cache contains data modified
by the victim, the contents of the cache line transits through
the LFBs while being written to memory. Second, when the
attacker wishes to leak data that the victim does not modify,
the attacker first evicts the data from the cache, and then
obtains it when it transits through the line fill buffers to satisfy
a concurrent victim read. Figure 2 shows a schematic overview
of these attacks, which we now describe.
Attacking Reads. The left part of Figure 2 shows our
attacks on victim read operations. We assume that the attacker
has already constructed an eviction set for the cache set that
contains the victim’s data. We further assume that the attacker
and the victim run on two hyper-threads of the same physical
core. For the attack, the attacker reads from all of the addresses
in the eviction set (Step 1). This loads the eviction set into the
L1-D, evicting the victim’s data. Next, the attacker waits for
the victim to access his data (Step 2). This victim access brings
the victim’s data from the L2 cache into the line fill buffers,
and subsequently to the L1 cache. Finally, the attacker uses
TAA (Step 3) to sample values from the line fill buffer and
transmit them via a FLUSH+RELOAD channel (Step 4).
Attacking Writes. Figure 2 (right) depicts our attack on
victim write operations. The attacker first waits until after
the victim writes to a cache line (Step 1). The attacker then
accesses the corresponding eviction set, forcing the newly
written data out of the L1-D cache and down the memory
hierarchy (Step 2). On its way to memory, the victim’s data
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Fig. 2: Overview of how we use TAA to leak from loads and
stores through Fill Buffers. Victim activity, attacker activity,
and microarchitectural effects are shown in green, red, and
yellow respectively. The context switches both illustrate the
OS flushing the MDS buffers before switching to the other
process as well as switching between actual hyper-threads.

passes through the LFBs. Thus, in Step 3, the attacker uses
TAA to sample the buffer and subsequently uses FLUSH+
RELOAD to recover the value (Step 4). Finally, unlike the case
of reads, this attack can be performed both with and without
hyper-threading.

A. Exploiting L1-D Eviction

Eviction Set Construction. A precondition for CacheOut
is that the attacker is able to construct an eviction set for
L1-D cache sets. Recall that an eviction set is a collection
of congruent addresses that all map to the same cache set.
On contemporary Intel processors, virtual addresses are used
for addressing the L1-D cache. Specifically, bits 6–11 of the
virtual address are used to identify the cache set. Consequently,
the attacker can allocate eight 4 KiB memory pages to cover
the whole cache. The attacker then constructs eviction sets
from memory addresses with the same page offset.
Measuring L1-D Eviction. To measure the number of
accesses needed to evict the victim’s line from the cache,
we use a synthetic victim that repeatedly accesses the same
cache set. We test CacheOut with varying eviction set sizes,
and under three different attack scenarios. Figure 3 contains
a summary of our results. In the first scenario (left) the
victim and the attacker time-share the same hyper-thread. As
expected, when the eviction set contains eight addresses we
get the best results, recovering the contents of the victim’s
cache line in 4.8% of the cases. Next, we note the decreased
performance of the attack with other eviction set sizes (both
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Fig. 3: Number of loads/stores required to evict the victim’s
cache line containing a fixed value. The blue bars indicate how
often we observe the correct value from the selected cache-
line, while the orange bars indicate how often we observe
data present in a different cache (due to noise). Finally, we
ran 10,000 iterations per tested set.

smaller and larger sets). We conjecture that small sets cannot
evict the victim’s element due to the cache’s LRU replacement
policy while larger eviction sets increase noise due to cache
pressure.

We also test the cases across hyper-threads, targeting the
victim’s memory reads (middle) and then victim writes (right).
While the results here are not as strong, the likelihood of
getting the victim’s data from the correct cache line is still
higher than getting data from other cache lines. For victim
reads, we still get the best results with an eviction set of size
eight while an eviction set of size six works best for writes.
We suspect that the cause is the increased L1-D contention
due to having two active hyper-threads.
Measuring Data Selection. Demonstrating our ability to
select which cache set to leak, we repeat the experiments of
Figure 3, this time varying the cache set the victim uses and
the cache set the attacker evicts. As can be seen in Figure 4,
in all scenarios the attacker can target a specific cache set,
correctly leaking its values, albeit with some noise for the
case of cross-thread victim writes. Finally, we note that this is
a qualitative improvement over prior works such as RIDL [48],
ZombieLoad [43] and Medusa [37], as these are limited to
leaking data already present in the 12 entries of the LFB, as
opposed to leaking data from the entire L1-D cache.

B. Selecting Cache Line Offsets

So far we have shown how to control the cache set from which
CacheOut leaks data. However, we note that like previous TAA
attacks [48], we still do not have control over the offset within
the 64-bytes cache line from which we read. In particular,
TAA [48] is only able to leak the first 8 bytes out of every
64-byte cache line, leaving the other 56 bytes unreachable.

Tackling this limitation, we discovered that that the offset
of load instructions that follow the TAA attack also controls
the cache line offset from which the TAA attack reads. More
specifically, Listing 1 shows our leakage primitive that allows
us to control the offset from which we read data. As we can
see, the code is basically the same as the TAA leak primitive,
but we added two movq instructions in Lines 16–17.
Analysing the CacheOut Primitive. We note that the
leakage in the CacheOut primitive occurs in Line 11. At a first
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Fig. 4: The victim loads/stores a secret to every possible cache
line (y-axis), while the attacker evicts every possible cache line
(x-axis) to leak it. We ran 10K iterations per test.

1 ; %rdi = leak source
2 ; %rsi = FLUSH + RELOAD channel
3 ; %rcx = offset-control address
4 taa_sample:
5 ; Cause TSX to abort asynchronously.
6 clflush (%rdi)
7 clflush (%rsi)
8

9 ; Leak a single byte.
10 xbegin abort
11 movq (%rdi), %rax
12 shl $12, %rax
13 andq $0xff000, %rax
14 movq (%rax, %rsi), %rax
15

16 movq (%rcx), %rax
17 movq (%rcx), %rax
18 xend
19 abort:
20 retq

Listing 1: CacheOut leak primitive.

glance it seems odd that later movq instructions can affect the
outcome of this instruction. However, we note that the movq
instructions we add do not depend on the outcome of the
leaking movq at Line 11. Thus, due to out-of-order execution
they can execute before the instructions that precede them in
program order. We hypothesize that the line fill buffer has
a read offset, some internal state that determines the offset
within buffer entries from which to read data. This read offset
gets reused by the leaking movq when the transaction aborts,
thereby allowing us to select the desired cache line offset.

Reducing Noise and Data Stitching. Modern Intel CPUs
typically employ two load ports, which allows them to execute
two load instructions in parallel. Exploiting this, in our attack
we duplicated and interleaved the instructions from lines 11–
14 in Listing 1, such that they execute two load instructions
in parallel on both load ports. Compared to executing a single
load instruction, we found that the strength of our signal
doubles when both load instructions refer to the same offset.

Next, this technique also allows us to avoid using the
Domino bytes method used in prior MDS works [37, 43, 48].
Instead, in our attack, we leak two consecutive data bytes at a
time, where two consecutive attack iterations share a common
data byte (at offset 2 in the first iteration and offset 1 in the
second iteration). Observing the leakage via the cache channel,
we stitch together data that matches on the overlapping data
byte as shown in Figure 5.

0011 0100

1010 0011

0100 0010

Bit Offset 0

Bit Offset 4

Bit Offset 8

0100 0100Result 00111010

0xf3 0x2e

0xff 0xf3

0x2e 0x42

Byte Offset 0

Byte Offset 1

Byte Offset 2

0x2e 0x42Result 0xf30xff

Fig. 5: On the left we show how the Domino attack samples
a byte at a time and uses four bits of every byte to stitch data
together. On the right we show our technique for CacheOut
where the attacker samples two bytes at a time and uses the
leading and trailing byte to stitch data together, effectively
doubling the attack’s speed.

Evaluating Offset Selection. To evaluate our offset selection
method, we use a victim process that chooses a byte offset
and writes a secret value to this byte, setting the rest of
the bytes in the same cache line to zero. The attacker then
tries to leak the secret from every possible byte offset from
the victim’s cache line. As we can see in Figure 6, we can
successfully select the offset in the cache line from which
we leak. Next, combining this behavior with the L1-D cache
set eviction method described in Section IV-A, CacheOut is
equally effective against all addresses, and improves on prior
MDS attacks by allowing the attacker to access any data
located in the L1-D cache while being able to select the precise
byte he is interested in leaking.

Evaluating Leakage Amount. Finally, we evaluate the rate
of information leakage resulting from exploiting targeted L1-
D evictions into the leaky LFB. Our victim writes some byte
value to a known cache location, while the attacker running on
the same physical core uses our address selection techniques in
order to recover the victim’s writes 10K times. We distinguish
between not leaking anything, leaking the correct value and
leaking the incorrect value. We find the leakage rate, i.e., how
often we leak the correct value over a certain period of time,
to be much larger than ZombieLoad’s 0.1B/s, peaking out at
2.85KiB/s for reads and 2.38KiB/s for writes.
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Fig. 6: The victim loads/stores a secret byte to every possible
offset within a fixed cache line (y-axis), while the attacker
tries to leak from every possible byte offset (x-axis).

C. Determining the Leakage Source

Flushing the MDS Buffers. While the verw instruction
is now used by Intel as a defense against MDS attacks,
the ability to overwrite the contents of MDS-affected buffers
is also helpful in determining the source of the leakage
observed by CacheOut. More specifically, our attacker issues
the verw instruction after evicting from the cache, but before
executing the leakage primitive. When the victim and attacker
execute sequentially on the same hyper-thread, this completely
removes the signal. Thus, we conclude that the actual leakage
stems from one of the MDS buffers. Next, when we move
the verw instruction before evicting from the cache in our
attacker, the attack leaks data from cache lines modified by
the victim, but does not leak victim reads. This supports the
hypothesis that the L1-D cache eviction transfers the data into
the LFB when it is written back to the L2 cache.
Exploiting verw. Ironically, we discovered that issuing the
verw instruction before evicting from the cache significantly
improves the signal for victim writes, both in cross-thread
and same-thread scenarios. As the verw instruction does not
require root privileges, we are able to abuse Intel’s MDS
countermeasures to reduce noise encountered during our attack
by having the attacker use verw to remove unwanted values
from the LFB. We conjecture that this attacker-executed verw
removes all values but the leaked one from the LFB, thereby
increasing the probability of the leaked value be successfully
recovered by TAA. To confirm this we run an experiment
where we try to leak from writes in the same-thread and cross-
thread scenarios, as well as from reads in the cross-thread sce-
nario, both with and without verw. Without verw, we report
an actual throughput of 26.57B/s, 2918.33B/s and 343.25B/s
for same-thread writes, cross-thread reads and cross-thread
writes respectively. With verw, we report an actual throughput
of 81.45B/s, 1833.93B/s and 2433.97B/s, respectively.
Flushing the L1-D Cache. To confirm that it is the eviction
from the L1-D that causes modified data to transit through
the LFB, we try to flushing the L1-D using MSR_IA32_-
FLUSH_CMD (MSR 0x10b) between the victim access and
the cache eviction. We find that in the same-thread case,

this completely removes the signal. This again supports the
hypothesis that evictions of modified data from the L1-D
transit through the LFB, where it is leaked by CacheOut.

V. CROSS PROCESS ATTACKS

To demonstrate the implications of CacheOut, we developed
multiple proof of concept attacks wherein an unprivileged
user process leaks confidential data from another process:
recovering AES keys, RSA keys, and the weights of a neural
network. Moreover, in our examples we demonstrate how
address selection enables more powerful attacks. That is,
CacheOut allows the attacker to select the locations to read
in the victim’s address space, rather than waiting for data
to become available in the LFB. In particular, unlike Zom-
bieLoad [43] and RIDL [48], we can effectively leak random-
looking data spanning multiple cache lines. This allows us to
lift the known-prefix or known-suffix restriction of [43, 48],
which requires prior knowledge of some prefix or suffix of the
data to leak. Indeed, instead of using a known prefix or suffix,
we use CacheOut to simply read as much data as we can from
the L1-D cache. As we know the location of the data pieces
relative to each other, we are able to partially reconstruct a
portion of the victim’s address space that is located inside the
L1-D cache. Next, we exploit redundancies in the data such as
derived AES keys or the relationship between p, q and n = pq
for RSA in order to find these inside the reconstructed parts
of the victim’s memory.

Finally, we also improve on ZombieLoad and RIDL [43, 48]
by showing attacks with and without hyper-threading.
Experimental Setup. We run the attacks presented in this
section on two machines. The first is equipped with an Intel
Core i7-8665 CPU (Whiskey Lake), running Linux Ubuntu
18.04.3 LTS with a 5.0.0-37 generic kernel. Our second
machine is equipped with an Intel Core i9-9900K (Coffee Lake
Refresh, Stepping 13) running Linux Ubuntu 18.04.1 LTS with
a 5.3.0-26 generic kernel. The former machine uses microcode
version 0xca, while the latter uses 0xb8.

A. Recovering AES Keys

Same-Thread Leakage. Our cross-process attack aims to leak
plaintext message and key material from an AES decryption
operation. To that aim, we constructed a victim process that
repeatedly decrypts an encrypted message, followed by issuing
the sched_yield() system call. The attacking process runs
sequentially on the same hyper-thread, and repeatedly calls
sched_yield() to allow the victim to run and decrypt
the ciphertext. After the victim finishes running, the attacker
evicts the set of interest from the L1-D cache into the LFB.
The attacker then uses TAA to sample the decrypted message
from the LFB; see Figure 7 for an illustration. Furthermore,
we found that if the buffer holding the plaintext messages
shares cache line with other data, we can also sample that
data. For instance, we were able to sample the 128-bit AES key
from the LFB when the victim writes the plaintext message
to the same 64B cache line as the 128-bit AES key. Finally,
even though we artificially instrumented the victim process to
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yield the CPU to simplify the synchronization problem, [14]
demonstrate that this is not a fundamental limitation and can
be overcome with an attack on the Linux scheduler.
Cross-Thread Leakage. We also run our experiment with
the victim and attacker running on the same physical core,
but different threads and without using sched_yield() in
either attacker or victim. Here, we are not only able to see
the decrypted plaintext and AES key, but also the expanded
round keys used in each of the AES’s rounds. Unlike the
same-thread case, we do not require the assumption that the
victim performs a write operation into the 64-byte cache line
containing the 128-bit AES key. Finally, since both the initial
AES key and the round keys are laid out consecutively in
memory, we can use CacheOut’s address selection capability
to recognize the AES keys from within the leakage data.
Locating AES Keys. To locate the AES keys inside the
leakage without knowing the location of the key data structure
inside the victim’s memory, we follow the technique of [15]
and consider every consecutive chunk of 128 bits, 192 bits
or 256 bits of data as a key candidate. We then expand the
candidate into the AES round keys and check if they match the
following chunk of data, up to a certain threshold. If we find
such a series of round keys, we conclude that the candidate is
the correct key.
Experimental Results. Compared to previous techniques [37,
43, 48], our attack benefits from CacheOut’s cache line selec-
tion capabilities which removes the need to perform online
noise reduction techniques (e.g., the “Domino-bytes” method
of [37, 43]). In addition, unlike previous works, CacheOut has
the ability to work with and without hyper-threading and to
recover the AES round keys. By targeting specific cache lines
from which to leak, our attack classifies plaintext bytes with
96.8% accuracy and 128-bit AES keys with 90.0% accuracy,
taking 15 seconds on average to recover a single 64 bytes
cache line over ten runs for the same-thread setup.

For our cross-thread setup, we sample data from all 64 cache
lines in our online phase at 500 iterations of TAA per byte
offset. This part of the attack takes 76.2 seconds on average
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Read from LFB
using TAA

Context Switch

Context Switch

Decrypt

Fig. 7: After decrypting, the victim writes the plaintext,
bringing it into the L1-D cache. The attacker can then evict it
from the L1-D cache and use TAA to read it from the LFB.

over ten runs, and we leak data with a raw throughput of
8.90KiB/s and an actual throughput of 63.39B/s. Furthermore,
we observe 98.34% of the AES key and round keys, where the
initial AES key appears at three different locations for 128-
bit, and two different locations for 256-bit providing us with
additional redundancy. We then proceed to locate the AES key
in our offline phase, which takes 183.29s on average.

B. Recovering RSA Private Keys

Leaking from OpenSSL RSA. To attack RSA in OpenSSL,
we run a victim that repeatedly decrypts a given ciphertext in
a loop. In our setup, both the victim and the attacker run on
different threads on the same physical core, where the attacker
samples data from the victim using TAA, without the need for
sched_yield() in both attacker and victim. Within the
sampled data, we observe 8 byte chunks of p and q, though
not in any particular order. Address selection does not help
us in this particular scenario, as we observe these chunks of
8 bytes for all possible 8-byte aligned offsets. Within the raw
dump of the sampled data, we are able to observe all of the
chunks of p and q, but without address selection, we cannot
determine whether the chunks are from p or q, or where in p
and q they appear.

Notably, we did not observe any data from the other
components of the private key (i.e., d, dp, and dq). Inspect-
ing OpenSSL’s modular exponentiation code, we find that it
requires p and q to be repeatedly loaded into the cache, due
to OpenSSL’s use of the Chinese Reminder Theorem (CRT).
We thus conjecture that the leakage signal observed from the
loadings of p, q dominates any other signal. Our algorithm for
reconstructing p and q from the unordered chunks is described
in Appendix B.

Key Extraction Results. For this experiment, we generated
512-bit, 1024-bit, 2048-bit and 4096-bit RSA keys. We then
performed the online phase of our attack, sampling sufficient
key data from our victim. We gathered 100% of the key data
in all cases by sampling from a single cache line for 2048-bit
keys and smaller, and from four cache lines for 4096-bit keys.
To sample data at each byte offset, we used 3K iterations for
1024-bit and smaller, and 5K iterations for 2048-bit and larger.
Our online phase took 7.4s, 7.4s, 13s, and 51s for the different
key sizes, averaged over 5 runs, compared to Medusa’s [37]
7min for 1024-bit.

Key Reconstruction. Next, in the offline phase, we recovered
the RSA private keys from the collected data. We were able to
recover 512-bit, 1024-bit, 2048-bit and 4096-bit RSA private
keys from the sampled data in 0.3s, 0.3s, 3.5s and 82.8s on av-
erage respectively, with the worst-case performance recorded
being 186s. We confirmed correct private key recovery via the
corresponding public key. Finally, we note that CacheOut’s
cleaner leakage signal allows us to improve Medusa’s [37]
400 CPU hour result for 1024-bit keys to mere seconds, while
also attacking larger 2048 and 4096-bit keys.
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C. Attacking Neural Networks
To further demonstrate the utility of address selection, we

also use CacheOut to steal the weights from an artificial neural
network (ANN). We note that these weights are valuable IP for
companies that invest resources on training networks, which
creates economic incentive for stealing such weights [53]. In
this section, we consider an attacker that aims to leak the
weights from a propriety victim neural network classifier.
Recovering Weights from FANN. We demonstrate our
weight recovery attack against the popular Fast Artificial
Neural Network (FANN) Library. The victim uses the generic
FANN model created by fann_create_standard() to
repeatedly classify a randomly chosen piece of English text
as one of three languages. On a parallel logical thread on the
same physical core as the classifier, the attacking process uses
5K iterations to sample data from each byte offset, without
the need for sched_yield() in either victim or attacker.
In this manner, we observe 98.4% of the weights among the
extracted data. However, the vast amount of raw data that
CacheOut leaks complicates the process of identifying the
network’s weights, requiring us to use a number of techniques
to clean the noise and identify weights’ values.
Exercising Address Selection. The model has 376 weights,
with each weight represented with 32 bits, resulting in a 1504B
array. Since the weights are stored sequentially in an array
allocated by calloc(), finding the start of the array reveals
the page offsets of all of the weights. After instrumenting the
FANN classifier to reveal the address of the weights’ array,
we found that the array always starts at a fixed page offset.
Thus, the attacker can find this location in an offline phase,
thereby enabling her to specifically target the cache lines
containing the weights during the online phase. With the naive
approach of simply selecting the 8 byte value that has been
seen the greatest number of times for each offset containing
a weight, we achieve 63.0% accuracy for determining the
value of each weight. In Appendix C we describe how to
improve the accuracy to 96.1% by exploiting both the weights’
storage format and the observation that the weights of a neural
network tend to be small. Crucially, we note that without
address selection, the attacker would not be able to map the
recovered weights to the neural network model. As the 1504B
weight array spans 23 different cache lines, even if the attacker
could accurately identify each weight with 100% accuracy, she
would not be able to determine which weight connects which
two neurons.
Experimental Results. We performed an experiment where
we try to leak the weights from a trained neural network. Our
attacker took 40s to run on average over ten runs with a raw
throughput of 17.08KiB/s and an actual throughput of 662B/s.
We observed 98.4% of the weights and recover the weights
with top-1, top-3 and top-5 accuracies of 95.2%, 96.6% and
96.6% respectively.

VI. ATTACKS ON LINUX KERNEL

CacheOut can also leak sensitive data from the unmodified
Linux kernel, even when hyper-threading is disabled. We

demonstrate how by developing attacks for breaking KASLR
and recovering secret kernel stack canaries.

A. Derandomizing Kernel ASLR

KASLR Overview. Kernel Address Space Layout Ran-
domization (KASLR) is a defense-in-depth countermeasure to
binary exploits. By randomizing offsets of entire code sections,
the kernel impedes control flow redirection attacks, which
require knowledge of the location of targeted code pieces.
Attacking Kernel ASLR. We now show how the cache
line selection capabilities of CacheOut enable an attacker to
reliably leak a kernel function pointer and breach KASLR
in under a second. The attacker binds itself to a single core
and repeatedly executes a loop composed of just a sched_-
yield() followed by TAA. When sched_yield() re-
turns to the attacker from the kernel, we use TAA to leak
stale L1-D data leftovers from the kernel during the context
switch. We first used TAA to leak data from all 64 cache
lines at all byte offsets. Upon inspection, we found that a
pointer corresponding to the hrtick kernel symbol could be
consistently recovered from the same cache line at the same
byte offset. We then verified that this location remains static
across both reboots and different machines running the same
kernel version.
Attack Evaluation. An attacker can exploit this by first
conducting offline analysis, running the attack code on a
machine running the same kernel version as the victim. Then,
after learning the location, the attacker can conduct the online
attack against the victim; the difference is that the attacker
needs only leak the single cache line and eight byte offsets
that contain the kernel pointer, as opposed to an entire 4KiB
of data. Thus, the cache-line selection capabilities of CacheOut
result in a running time of 14 seconds for the offline analysis
phase, and under a single second for the online attack phase.

B. Defeating Kernel Stack Canaries

Stack Canaries Overview. Stack Canaries [11] are another
widely deployed defense-in-depth countermeasure to binary
exploits.More specifically, these aim to protect against stack-
based buffer overflows, where an attacker writes beyond the
end of a buffer on the stack and overwrites data used for
control flow (e.g. function pointers and return addresses).
Extracting Kernel Canary Values. We used CacheOut
to leak the Linux kernel’s 64-bit stack canary value, which is
shared for all kernel functions running on the same core in the
context of the same process. The attacking code is similar to
the KASLR break, but instead of repeatedly calling sched_-
yield(), we execute a loop with a write to /dev/null,
followed by performing TAA to leak from the L1-D cache.
We found three different locations (cache line and byte offset)
where the kernel’s stack canary can be leaked. On average,
the attack succeeds in 23s when evaluated on an i9-9900K
stepping 12 CPU with microcode 0xca running Ubuntu 16.04.
To our knowledge, CacheOut is the first microarchitectural
side-channel that manages to recover stack canaries from
the kernel. This is made possible by the address selection
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Fig. 8: The number of loads/stores required to evict the L1-D
cache sets for loads (left), stores (right), against the hypervisor
(top) and across VMs (bottom).

capabilities, as a completely random 64-bit value is extremely
difficult to detect without targeting a particular cache line.

VII. BREAKING VIRTUALIZATION

Infrastructure-as-a-Service (IaaS) cloud-computer services
provide their end-users virtualized system resources, where
each tenant runs in a separate VM. Modern processors support
virtualization by means of extensions where the hypervisor
can create and manage these VMs that each run their own
OS and applications in an isolated environment, analogous to
how an OS creates and manages processes. In this section, we
demonstrate that CacheOut can break VM isolation, showing
how to leak both from the hypervisor as well as VMs that are
co-resident on the same physical CPU core.
Experimental Setup. We ran the attacks presented in this
section on an Intel Core i7-8665U (Whiskey Lake) running
Linux Ubuntu 18.04.3 LTS with a 5.0.0-37 generic kernel and
microcode update 0xca. We used QEMU 2.11.1 with KVM
enabled and 1GB hugepages set up on two different threads
on the same physical core.
Evicting L1-D Cache Sets. We perform the same experiment
as in Section IV-A to determine the number of loads and stores
necessary to evict any L1-D cache set across VMs and to
attack the hypervisor across CPU threads. Figure 8 shows that
we can successfully leak data from the hypervisor as well
as across VMs using 8 loads and 3 to 4 stores against the
hypervisor and 10 loads and stores across VMs.
Selecting L1-D Cache Sets. After establishing the ideal
number of loads and stores required to evict the L1-D cache
set, we now proceed with the second experiment as outlined

in Section IV-A. We set up our hypervisor and victim VM
to write a secret to every possible cache set, and then try to
leak from every possible cache set using our attacker VM. We
present our results in Figure 9, which clearly shows that we
are able to select and evict any L1-D cache set and leak secrets
from either the hypervisor or a co-resident victim VM.
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Fig. 9: The hypervisor and victim VM loads/stores a secret
from/to every possible cache line (y-axis), while the attacker
VM tries to evict every possible cache line (x-axis) to leak it.

A. Leaking AES Keys Across VMs

We run a setup with an attacker and a victim VM across
Intel hyper-threads, where the victim is running a program that
repeatedly performs AES decryptions using OpenSSL 1.1.1.
The attacker VM evicts the L1-D cache set of interest in an
attempt to leak interesting information from the victim process
through the line fill buffer. Once the attacker manages to evict
the data from the L1-D cache into the line fill buffer, the
attacker uses TAA to sample the AES key.

Experimental Results. We targeted a specific cache line
to leak from, and ran our experiment three times. For each
run, we attempted to leak each key byte 10,000 times. During
all three runs, the bytes corresponding to the victim’s AES
key were observed during 20 out of the 10,000 attempts. In
order to improve our signal, we run sched_yield() in a
loop in an attempt to capture baseline noise that we can later
subtract from the AES signal. Upon subtraction, we were able
to recover 75% of the key bits on average across the three
runs. Finally, as in the case of Section V, it took about 15
seconds on average to leak a single 64-byte cache line.
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B. Leaking RSA Keys Across VMs

We adapted the experiment from Section V-B for stealing
RSA private keys across VMs. We use the same victim as in
Section V-B, which runs RSA decryptions in a loop inside a
VM. From within a VM on a parallel hyper-thread running on
the same physical core, we use CacheOut to sample data from
all cache lines. When repeating the attack from Section V-B,
we are able to observe 100% of the chunks of p and q from the
extracted data. Compared to the cross-process scenario from
Section V-B, the VMs introduce a substantial amount of noise,
which we overcome by sampling with CacheOut over a larger
number of iterations.
Experimental Results. We found that we can extract 100%
of the key data using 5K iterations for 512-bit RSA keys and
10K iterations for 1024-bit RSA keys and larger to sample
data per byte offset. This resulted in an average run time of
11.71s, 23.16s, 23.24s and 24.32 to sample the data for 512-
bit, 1024-bit, 2048-bit and 4096-bit RSA keys respectively
over ten runs. In addition, we observed an actual throughput
of 1.21KiB/s, 2.15KiB/s, 2.68KiB/s and 5.82KiB/s for the
different key sizes. Our offline phase where we recover the
RSA key from our collected data took 2.18s, 2.27s, 33.96s
and 95.50s on average for the different key sizes. Finally, we
note that Medusa [37] did not demonstrate any cross-VM data
extraction attacks (besides a covert channel), presumably due
to noise.

C. Stealing FANN Weights Across VMs

We also reproduced the results from Section V-C for stealing
the weights from FANN. In our experiment, the same victim
from Section V-C repeatedly classifies on one VM, while
an attacker uses CacheOut to sample from an attacking VM
running on a parallel Intel hyper-thread on the same physical
core. When using 5,000 iterations of CacheOut to leak data
from each of the targeted locations, the average run time of
the attack is 376.69s with 99.90% of the weights observed
among the recovered data. We achieve top-1, top-3, and top-5
accuracies of 93.95%, 96.08%, and 96.30% respectively.

D. Breaking Hypervisor ASLR

Similarly to kernels, hypervisors also deploy ASLR. To leak
any information regarding ASLR from the hypervisor, we first
find a controlled way to trap into the hypervisor. One way of
trapping into the hypervisor is by issuing cpuid from the
VM, as the hypervisor hides or represents CPU information
in a different way. We assume an attacker VM with full access
over at least a single CPU core with Intel hyper-threading. On
one of the threads, the attacker runs a loop issuing cpuid,
while on the other thread it runs the attacker program.
Disambiguating Guest and Host. In addition to the
hypervisor, our attacker VM is also running its own kernel
from which we leak kernel pointers. In order to disambiguate
the kernel pointers we find from actual hypervisor pointers, we
simply reboot our VM. This ensures that the guest kernel has
to choose random values again to use for KASLR, while the
hypervisor keeps using the same random value. This allows

us to tell apart the pointers we leak from the hypervisor, as
the kernel pointers belonging to the attacker’s VM are likely
to change after a reboot.
Hypervisor ASLR Attack Evaluation. We first perform an
offline phase to determine whether there are static locations
from which we can leak hypervisor addresses. We found
that there are indeed various locations that leak a hypervisor
pointer to x86_vm_ops. After establishing the fixed locations
for a known kernel, we can mount an online attack on the
hypervisor. This reduces the time from roughly 17 minutes in
the offline phase to 1.8 seconds.

VIII. BREACHING SGX ENCLAVES

Intel’s Software Guard Extensions (SGX) is a set of CPU
features that offer hardware-backed confidentiality and in-
tegrity to user space programs, even in the presence of a
root-level adversary. This enables users to execute a program
securely even on a system where the OS and all of the
hardware, except for the CPU, are untrusted. In this section we
present attacks for dumping the contents of an SGX enclave,
thereby violating SGX’s confidentiality guarantees. Moreover,
unlike RIDL [48] and ZombieLoad [43], the ability to control
which memory address we would like to leak allows us to
recover unstructured large secrets, such as images. Following
SGX’s threat model, we assume a malicious OS that aims
to breach enclave confidentiality. We also assume that hyper-
threading is enabled and that the attacker runs in parallel on
the same physical core as the victim enclave.
Experimental Setup. We ran the attacks in this section on
an Intel Core i7-8665 CPU (Whiskey Lake), running Linux
Ubuntu 18.04.3 LTS with a 5.0.0-37 generic kernel with
microcode version 0xca. This machine is fully mitigated
against MDS, meaning that enabling hyper-threading does
not violate SGX’s security and hyper-threading on Whiskey
Lake is considered to be a safe configuration. Furthermore,
the machine has been updated with Intel’s latest microcode,
which mitigates TAA attacks on SGX by disallowing TSX
transactions on logical cores that are co-resident with logical
cores running SGX enclaves [21].

A. Reading Enclave Data

The first building block for attacking SGX with CacheOut
is to force the victim enclave’s data into the L1-D cache.
Loading Secret Data into the Cache. Even though
the malicious kernel cannot directly read the contents of
the enclave, the kernel is still responsible for paging the
victim enclave’s pages using the special SGX instructions ewb
and eldu. Foreshadow [46] discovered that by using these
instructions, an attacker can load the data into the L1-D cache,
even in case the victim enclave is not running at all. Similarly
to Foreshadow [46], we used the ewb and eldu instructions
to load the victim’s decrypted page into the L1-D cache. See
Steps 1 and 2 in Figure 10.

We improved upon this technique by forcing multiple copies
of the plaintext corresponding to the victim’s page into the
cache. To achieve this, each time the attacker executes ewb
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and eldu, she allocates a different physical frame for the SGX
enclave. Since writing to different physical addresses puts the
data in different cache ways, we were able to fill the entire
cache with the victim enclave’s secret page, thereby improving
the probability of evicting the correct data. Finally, since the
ewb and eldu instructions operate at page granularity, an
attacker using these instructions can choose which pages to
read from. This gives the attacker more control over the leaked
data, compared to the other attacks in this paper, which only
have control over the page offset.
Reading Secret Enclave Data. After loading the secret data
into the L1-D (Figure 10 Steps 1-2), the attacker can mount a
CacheOut attack that performs Steps 3-5. When the attacker
evicts the targeted cache line in Step 3, it is evicted into a leaky
microarchitectural buffer. The attacker then leaks the data in
the chosen eviction set via TAA (Step 4) and retrieves it using
FLUSH+RELOAD in Step 5. While we chose to demonstrate
the attacks in the section against a victim enclave running on
a parallel thread, we were also able to observe data leakage
in the sequential model. Even with hyper-threading disabled,
we can exercise address selection to read enclave data that
remains in the L1-D cache after the enclave exits.
Bypassing TAA Countermeasures. We are able to utilize
TSX for this attack despite Intel’s mitigation for preventing
TSX and SGX simultaneously running on the same core [21].
This is likely because the L1 is not being flushed after
the enclave finishes running. Afterwards, once TSX is again
enabled, the attacker can evict the targeted data from the L1-D
into the LFB, and then perform TAA to read the data.
SGX Image Extraction. In order to quantify our leakage
from SGX, we set up an SGX enclave that contains a picture
of the Mona Lisa, and use CacheOut to leak and reconstruct
the picture. As the image we are trying to extract is 128
by 194 pixels, it spans multiple pages. Thus, we use the
aforementioned ewb and eldu technique on each image
page individually, and use address selection in order to leak
unstructured pixel data from the entire page. We sampled the
image data from the SGX enclave five times. For each byte
offset, we used 2.5K TAA iterations to sample data, resulting
in a run time of 7.75s per cache line and 496s per page on
average. In each such run, we observed 36% of the image
data on average and an actual throughput of 24.54B/s. We
combined the data from our runs observing 71% of the image.
Image Reconstruction. We now reconstruct the picture of
the Mona Lisa from our collected data. First, since we have
address selection capabilities, we are able to collect all the
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Fig. 10: A schematical overview of how the SGX paging
mechanism, in combination with TSX Asynchronous Abort,
leaks arbitrary SGX data.

candidates for every pixel from our sampled data. Then we
calculate a score for each candidate based on the candidates
of the neighbouring pixels using a naı̈ve distance function:
(r1 ·r2)2+(g1 ·g2)2+(b1 ·b2)2. Finally, we sort the candidates
based on the smallest score first and select the first candidate
as the actual pixel to output in the resulting image. The offline
phase took 8.39s to reconstruct the image, which can be seen
on the right in Figure 11. To reconstruct the the Mona Lisa
from our collected data, we first use our address selection
capabilities to obtain all the candidates for every pixel from
our sampled data. Then we calculate a score for each candidate
based on the candidates for neighboring pixels using a distance
function: (r1 · r2)2 + (g1 · g2)2 + (b1 · b2)2. Finally, we sort
the candidates select the candidate with the smallest score as
the actual pixel value. The offline phase took 9s to reconstruct
the image, which can be seen in Figure 11(right).

Fig. 11: On the left the original Mona Lisa picture (128x194)
and on the right the Mona Lisa picture recovered from an SGX
enclave on the Intel Core i7-8665U.

B. Extracting the SGX EPID Key

Trust in the SGX ecosystem is rooted in the Enhanced
Privacy ID (EPID) key, where compromising a single EPID
key breaches the entire SGX ecosystem’s security. Thus, this
key is available only to enclaves written and signed by Intel.
It is stored as a normal file, but encrypted using seal keys that
are only available to Intel’s quoting and provisional enclaves.
EPID Key Extraction in Debug Mode. We begin the process
of recovering EPID keys by compiling and self-signing Intel’s
quoting enclave, running it with debuging EPID keys. We then
recovered the sealing key used to seal the file holding the
debugging EPID keys and subsequently used it to decrypt the
debugging EPID key. To extract the sealing key, we used a
controlled-channel attack [51], pausing the quoting enclave
after it has loaded the seal key into memory. After this
point, the enclave never resumes execution and is permanently
stopped. After stopping the enclave with the sealing key in
memory, we use the technique from Section VIII to repeatedly
swap in and out the page containing the sealing key, extracting

14



it using CacheOut. This stage takes about 1.5 minutes. Due to
noise, we see on average 4.5 candidates per key byte, where
the key is 16 bytes. This leaves 747K candidates to brute
force. Because the key is sealed using AES-GCM, we can
identify the correct key during the offline brute force phase
by comparing against the GCM authentication tags. We brute-
forced the sealing key in 5 seconds, successfully decrypting
the file holding the debugging EPID keys.

Bypassing Software Defenses. We note that the above
attack, as well as the attacks in Section VIII, do not require
the victim enclave to execute any specific access pattern to the
key, or even run at all after loading the key into memory. Thus,
CacheOut must be mitigated in hardware, as there is nothing
an enclave can do to protect its secrets from being extracted. In
particular, our attack bypasses all existing software mitigations
for side channels, such as constant-time coding, detecting
page-faults [6, 39, 44], and others [12, 42].

Comparison to State-of-the-Art. Our breach of an SGX
enclave on this particular machine exemplifies how Cache-
Out’s advancement over the state of the art in transient-
execution attacks enables it to compromise a system that is
resistant to previously known attacks. The i7-8665U (Whiskey
Lake) contains in-silicon Foreshadow [46] mitigations, which
prevent an attacker from directly leaking from the L1-D cache.
Fallout [4] cannot target SGX, as the store-buffer is flushed
upon swapping to the enclave’s page tables. Finally, RIDL [48]
and ZombieLoad [43] are mitigated by disallowing TSX and
SGX in parallel [21], leaving CacheOut as the only technique
for EPID key extraction.

Attacking Production Enclaves. While the above demon-
strates the theoretical feasibility of extracting the CPU’s EPID
key, we did use a version of the quoting enclave which was
self-compiled and self-signed. As such, this version is unable
to access the machine’s actual attestation keys, thus preventing
us from extracting them. The reason we made this choice is
that at the time of writing, Whiskey Lake machines have an
issue with their internal GPU, which allows attackers to leak
information from within SGX enclaves [25]. As Whiskey Lake
is a laptop architecture, it is impossible to disable the internal
GPU, which results in these machines being unable to receive
a trusted SGX status and production attestation keys. Being
unable to configure the machine in a state trusted by Intel,
we have resorted to extracting the EPID sealing key from the
quoting enclave that we compiled and signed ourselves, using
the official Intel-provided source code.

SGAxe: How SGX Fails in Practice. However, in a
follow-up work [49], we demonstrate the breach of the SGX
ecosystem by extracting production EPID attestation keys from
an older Coffee Lake Refresh based desktop, which we were
able to configure to a trusted state using an external GPU.
In particular, SGAxe [49] demonstrates the extraction of the
machine’s production attestation keys on a fully updated and
trusted machine, defeating recent side-channel countermea-
sures such as LVI [47] and PlunderVolt [38]

IX. MITIGATIONS

We now discuss various ways to mitigate CacheOut: dis-
abling hyper-threading, flushing the L1-D cache, disabling
TSX and microcode updates by Intel.
Disabling Hyper-Threading. Similar to MDS, CacheOut
works best when the attacker and victim run in parallel on two
threads on the same physical core. However, as CacheOut is
also effective in the scenario without hyper-threading where
attacker and victim run on the same CPU thread, disabling
hyper-threading makes the attack difficult but not impossible
(see Section V, VI, and VII). Finally, as disabling hyper-
threading carries a significant performance overhead, we do
not recommend this countermeasure for mitigating CacheOut.
Flushing the L1-D cache. As discussed in Section IV-C,
CacheOut leaks information from the L1-D cache. Thus, one
might attempt to flush the L1-D and LFB on security domain
changes, in an attempt to eliminate the source of the signal.
Unfortunately, L1-D cache flushing adds significant overhead
and only covers the case without hyper-threading, as leaving
hyper-threading enabled means that CacheOut will be able to
leak data from the L1-D as the victim accesses it. Thus, given
the cost of implementing both of these countermeasures, we
do not recommend deploying them for mitigating CacheOut.
Disabling TSX on New Hardware. To address TAA [21]
on the newest platforms released after Q4 of 2018 (i.e., after
Coffee Lake Refresh), Intel released a series of microcode
updates between September and December 2019 that disable
transactional memory. These microcode updates introduce
MSR_IA32_TSX_CTRL (MSR 0x122), where the first bit in
the MSR disables TSX, and the second bit disables CPUID
enumeration for TSX capability. Concurrent to our work and
after our disclosure, OS vendors started disabling TSX by
default on all Intel machines released after Q4 of 2018.
We note that, however, this mitigation is only partial as a
malicious operating system can always re-enable TSX and use
CacheOut to leak data from SGX enclaves while bypassing
Intel’s SGX countermeasures for TAA (as we demonstrated in
Section VIII). Thus, at present SGX remains vulnerable.
Disabling TSX on Older Hardware. We note however that
the vast majority of Intel machines currently deployed were
released before Q4 2018. For those machines, Intel started
rolling out microcode updates to address CPU errata regarding
TSX [26], allowing operating systems to disable TSX by
making transactions always abort. However, at the time of
writing this behavior is not enabled by default, leaving the
majority of deployed Intel CPUs exposed to CacheOut. Given
that TSX is not widely used, we recommend to disable TSX by
default on these CPUs as well. Finally, we note that TSX must
be disabled on the microarchitectural level, including during
transient and speculative execution, as opposed to aborting the
TSX transaction after speculation has occurred.
SGX Security. As we show in Section VIII, a malicious OS
can always re-enable TSX and subsequently use CacheOut in
order to dump the enclave’s contents. While SGX is insecure
at present, we recommend that future microcode updates
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declare TSX to be unsafe in combination with SGX on current
machines, and to flush the L1-D every time TSX is enabled.
Microcode Updates. Intel’s security advisory [23] indicates
that CacheOut (called L1DES in Intel’s terminology) will be
mitigated via additional microcode updates. These are ex-
pected to be available on June 9th, 2020, with preview versions
supplied by Intel indeed showing a successful mitigation of
CacheOut. In private communication, Intel further indicated
that mitigating the new data path between L1-D evictions and
the LFB discovered by this work is done by adjusting internal
CPU timing, preventing the leakage exploited by CacheOut.
We recommend that affected users install these, especially on
older machines that do not disable TSX by default.

X. CONCLUSION

In this paper, we investigated Intel’s use of buffer overwriting
to mitigate MDS attacks, and found that we could force
the victim’s data to re-enter microarchitectural buffers even
after their contents were overwritten during a transition be-
tween security domains. Using this technique we developed
CacheOut, a new transient-execution attack that is capable
of breaching Intel’s buffer overwrite countermeasures, while
allowing the attacker to surgically choose exactly what data
to leak from the CPU’s L1-D cache. We demonstrated the
implications of CacheOut by developing attacks breaching
confidentiality across a number of security domains, spanning
user space, kernel space, and hypervisors. Furthermore, we
also demonstrated that SGX is still insecure, despite the
deployment of MDS countermeasures. Finally, CacheOut is
able to leak data on Intel’s Whiskey Lake CPUs, which are
resilient to prior MDS attacks.
Limitations. While we clearly demonstrated the feasibility of
CacheOut using TSX, we were unable to perform CacheOut
using other transient-execution attack primitives (e.g., mispre-
dicted branches). While we acknowledge this limitation, we
note that TSX is still enabled on all Intel machines released
prior to Q4 2018 and can be re-enabled by a malicious OS in
the case of SGX. Next, the signal for the cross-process, VM
and kernel variants of CacheOut is noisy, requiring multiple
attack iterations for data extraction. Thus, we leave it to future
work to demonstrate CacheOut-type leakage without TSX, as
well as improving that attack’s signal-to-noise ratio. Finally,
CacheOut is only able to leak data located inside the CPU’s
L1-D cache, leaving other levels of the memory hierarchy out
of reach. As L3 caches are often shared between physical
cores, exploring techniques for reading L3-data is an important
research problem with many immediate security implications.
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APPENDIX A
TSX ASYNCHRONOUS ABORT

Listing 2 shows a code example of TAA, where the attacker
simply allocates a 4 KiB page as the leaking source. She
then flushes the cache lines that are about to be used by
the TSX transaction, as shown in Lines 5–6. The transaction
then attempts to read from the leak page (Line 10), and then
transmits the least significant byte of the value it reads using
a FLUSH+RELOAD channel as shown in Lines 11–13.

APPENDIX B
RECOVERING P AND Q

With all the chunks making up p and q successfully recov-
ered, the next challenge is to reconstruct p and q such that
N = p ·q. We assume that the attacker knows the modulus N ,
which is part of the public key. Then, as observed by Heninger
and Shacham [16], N = p · q implies that the low k bits of N
are equal to the low k bits of p · q. In order to reconstruct p
and q, we iteratively recover the the primes 8 bytes at a time
as follows, starting from the LSB.

We first iterate over all possible pairs of the 8 byte chunks,
and for each pair (p0, q0) compute n0 ← p0 · q0. If the low 8
bytes of n0 match the least significant 8 byte chunk of N , then
p0 and q0 are the least significant bytes of p and q. To find the

1 ; %rdi = leak source
2 ; %rsi = FLUSH + RELOAD channel
3 taa_sample:
4 ; Cause TSX to abort asynchronously.
5 clflush (%rdi)
6 clflush (%rsi)
7

8 ; Leak a single byte.
9 xbegin abort

10 movq (%rdi), %rax
11 shl $12, %rax
12 andq $0xff000, %rax
13 movq (%rax, %rsi), %rax
14 xend
15 abort:
16 retq

Listing 2: the leak primitive using TSX Asynchronous Abort

second least significant 8 byte chunks, we again iterate over
all pairs and for each pair (p1, q1) compute n1 ← (p1||p0) ·
(q1||q0), where || denotes appending 8 byte chunks. If the least
significant two bytes of n1 are equal to the two low bytes of
N , then p1 and q1 are the 2nd least significant bytes of p and
q. By repeating in this manner for each 8 byte chunk, we can
fully recover both p and q.

APPENDIX C
ANN WEIGHT RECOVERY

Weight Filtering. We improve the accuracy of our weight
stealing attack by exploiting both the weights’ storage format
and the observation that the weights of a neural network tend
to be small (typically within the range [-1,1]). The weights are
small due to machine learning algorithms using regularization
during the training phase, which pushes the weights towards
zero in order to prevent both overfitting of the model and
the gradient explosion problem, which results in untrainable
neural networks.

The weights are stored as 32-bit single-precision floating
points, which are specified by the IEEE 754 single-precision
floating-point standard to use bit 31 for the sign bit, bits 23-30
for the exponent with a bias of -127, and the remaining 23 bits
for the mantissa. A small value implies that the exponent field
will be very near to 127, and despite the 24 bits of precision,
this format means that the smallness of the weights result in a
very limited set of values for the most significant byte of each
weight. In practice, we find that the MSB does not deviate
from 0x40 or 0xc0 by more than 3 for positive and negative
weights, respectively. By rejecting all candidates for weights
that do not fit, we improve the accuracy to 93%.

We further improve the accuracy by observing that the dis-
tribution of the frequency of different bytes of noise produced
by CacheOut is not uniform. In particular, the values 0x00
and 0xff appear with a far higher frequency than all others.
As such, by penalizing the scores for recovered values that
contain 0x00 or 0xff, we improve the accuracy to 96.1%.
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